43 research outputs found

    Novel Approach to Hide Sensitive Association Rules by Introducing Transaction Affinity

    Get PDF
    In this paper, a novel approach has been proposed for hiding sensitive association rules based on the affinity between the frequent items of the transaction. The affinity between the items is defined as Jaccard similarity. This work proposes five algorithms to ensure the minimum side-effects resulting after applying sanitization algorithms to hide sensitive knowledge. Transaction affinity has been introduced which is calculated by adding the affinity of frequent items present in the transaction with the victim-item (item to be modified). Transactions are selected either by increasing or decreasing value of affinity for data distortion to hide association rules. The first two algorithms, MaxaffinityDSR and MinaffinityDSR, hide the sensitive information by selecting the victim item as the right-hand side of the sensitive association rule. The next two algorithms, MaxaffinityDSL and MinaffinityDSL, select the victim item from the left-hand side of the rule whereas the Hybrid approach picks the victim item from either the left-hand side or right-hand side. The performance of proposed algorithms has been evaluated by comparison with state-of-art methods (Algo 1.a and Algo 1.b), MinFIA, MaxFIA and Naive algorithms. The experiments were performed using the dataset generated from IBM synthetic data generator, and implementation has been performed in R language

    Investigations in Privacy Preserving Data Mining

    Get PDF
    Data Mining, Data Sharing and Privacy-Preserving are fast emerging as a field of the high level of the research study. A close review of the research based on Privacy Preserving Data Mining revealed the twin fold problems, first is the protection of private data (Data Hiding in Database) and second is the protection of sensitive rules (Knowledge) ingrained in data (Knowledge Hiding in the database). The first problem has its impetus on how to obtain accurate results even when private data is concealed. The second issue focuses on how to protect sensitive association rule contained in the database from being discovered, while non-sensitive association rules can still be mined with traditional data mining projects. Undoubtedly, performance is a major concern with knowledge hiding techniques. This paper focuses on the description of approaches for Knowledge Hiding in the database as well as discuss issues and challenges about the development of an integrated solution for Data Hiding in Database and Knowledge Hiding in Database. This study also highlights directions for the future studies so that suggestive pragmatic measures can be incorporated in ongoing research process on hiding sensitive association rules

    BAS-VAS: A novel secure protocol for value added service delivery to mobile devices

    Get PDF
    Mobile operators offer a wide range of valueadded services (VAS) to their subscribers (i.e., mobile users), which in turn generates around 15% of the telecommunication industry revenue. However, simultaneous VAS requests from a large number of mobile devices to a single server or a cluster in an internet-of-things (IoT) environment could result in an inefficient system, if these requests are handled one at a time as the present traditional cellular network scenario is. This will not only slow down the server’s efficiency but also adversely impacts the performance of the network. The current (insecure) practice of transmitting user identity in plaintext also results in traceability. In this paper, we introduce the first known protocol designed to efficiently handle multiple VAS requests at one time, as well as ensuring the secure delivery of the services to a large number of requesting mobile users. The proposed batch verification protocol (BAS-VAS) is capable of authenticating multiple simultaneous requests received by a large number of mobile users. We demonstrate that the protocol preserves user privacy over the network. The provider’s servers ensure the privacy of the requested service’s priority by performing sorting over encrypted integer data. The simulation results also demonstrate that the proposed protocol is lightweight and efficient in terms of communication and computation overheads, protocol execution time, and batch and re-batch verification delay. Specifically, we perform batch and re-batch verification (after detecting and removing malicious requests from the batch) for multiple requests in order to improve the overall efficiency of the system, as well as discussing time, space and cost complexity analysis, along with the security proof of our protocol using Proverif

    Secure algorithms for SAKA protocol in the GSM network

    No full text
    This paper deals with the security vulnerabilities of the cryptographic algorithms A3, A8, and A5 existing in the GSM network. We review these algorithms and propose new secure algorithms named NewA3, NewA8, and NewA5 algorithms with respect to the A3, A8, and A5 algorithms. Our NewA5 algorithm is based on block ciphers, but we also propose NewA5 algorithm with Cipher Feedback, Counter, and Output Feedback modes to convert block cipher into stream cipher. However, stream cipher algorithms are slower than the block cipher algorithm. These new algorithms are proposed to use with a secure and efficient authentication and key agreement (AKA) protocol in the GSM network. The proposed architecture is secure against partition attack, narrow pipe attack, collision attack, interleaving attack, and man-in-the-middle attack. The security analysis of the proposed algorithms are discussed with respect to the cryptanalysis, brute force analysis, and operational analysis. We choose the NewA3 and NewA8 algorithms for challenge-response and key generation, respectively. Furthermore, the NewA5 is suitable for encryption as it is efficient than the existing A5/1 and A5/2 algorithms. In case when stream cipher algorithms are required to use, our new algorithms, NewA5-CTR, NewA5-CFB, and NewA5-OFB can be used for specific applications. These algorithms are completely secure and better than the existing A5/1 and A5/2 in terms of resistant to attacks

    An Improved Genetic Algorithm for Developing Deterministic OTP Key Generator

    No full text
    Recently, a genetic-based random key generator (GRKG) for the one-time pad (OTP) cryptosystem has been proposed in the literature which has certain limitations. In this paper, two main characteristics (speed and randomness) of the GRKG method are significantly improved by presenting the IGRKG method (improved genetic-based random key generator method). The proposed IGRKG method generates an initial pad by using linear congruential generator (LCG) and improves the randomness of the initial pad using genetic algorithm. There are three reasons behind the use of LCG: it is easy to implement, it can run efficiently on computer hardware, and it has good statistical properties. The experimental results show the superiority of the IGRKG over GRKG in terms of speed and randomness. Hereby we would like to mention that no prior experimental work has been presented in the literature which is directly related to the OTP key generation using evolutionary algorithms. Therefore, this work can be considered as a guideline for future research
    corecore